Molecular ordering of organic molten salts triggered by single-walled carbon nanotubes.

نویسندگان

  • Takanori Fukushima
  • Atsuko Kosaka
  • Yoji Ishimura
  • Takashi Yamamoto
  • Toshikazu Takigawa
  • Noriyuki Ishii
  • Takuzo Aida
چکیده

When mixed with imidazolium ion-based room-temperature ionic liquid, pristine single-walled carbon nanotubes formed gels after being ground. The heavily entangled nanotube bundles were found to untangle within the gel to form much finer bundles. Phase transition and rheological properties suggest that the gels are formed by physical cross-linking of the nanotube bundles, mediated by local molecular ordering of the ionic liquids rather than by entanglement of the nanotubes. The gels were thermally stable and did not shrivel, even under reduced pressure resulting from the nonvolatility of the ionic liquids, but they would readily undergo a gel-to-solid transition on absorbent materials. The use of a polymerizable ionic liquid as the gelling medium allows for the fabrication of a highly electroconductive polymer/nanotube composite material, which showed a substantial enhancement in dynamic hardness.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Dynamics Investigation of The Elastic Constants and Moduli of Single Walled Carbon Nanotubes

Determination of the mechanical properties of carbon nanotubes is an essential step in their applications from macroscopic composites to nano-electro-mechanical systems. In this paper we report the results of a series of molecular dynamics simulations carried out to predict the elastic constants, i.e. the elements of the stiffness tensor, and the elastic moduli, namely the Young’s and shear mod...

متن کامل

Radius Dependence of Hydrogen Storage Inside Single Walled Carbon Nanotubes in an Array

In this study, we have investigated radius dependence of hydrogen storage within armchair (n,n) single walled carbon nanotubes (SWCNT) in a square arrays. To this aim, we have employed equilibrium molecular dynamics (MD) simulation. Our simulations results reveal that radius of carbon nanotubes are an important and influent factor in hydrogen distribution inside carbon nanotubes and consequentl...

متن کامل

Nonlocal Flügge shell model for the axial buckling of single-walled Carbon nanotubes: An analytical approach

In this paper, the stability characteristics of single-walled carbon nanotubes (SWCNTs) under the action of axial load are investigated. To this end, a nonlocal Flügge shell model is developed to accommodate the small length scale effects. The analytical Rayleigh-Ritz method with beam functions is applied to the variational statement derived from the Flügge-type buckling equations. Molecular dy...

متن کامل

Nonlocal Flügge shell model for the axial buckling of single-walled Carbon nanotubes: An analytical approach

In this paper, the stability characteristics of single-walled carbon nanotubes (SWCNTs) under the action of axial load are investigated. To this end, a nonlocal Flügge shell model is developed to accommodate the small length scale effects. The analytical Rayleigh-Ritz method with beam functions is applied to the variational statement derived from the Flügge-type buckling equations. Molecular dy...

متن کامل

Investigation of hydralazine drug adsorption on functionalized single-walled carbon nanotubes by density functional theory (DFT) method

Background: In recent years, advances in nanotechnology presents opportunities to overcome limitations in targeted drug delivery. Nano drug carriers have the ability to change the pharmacokinetics of drugs and can improve efficacy and reduce side effects. The objective of the present work is to study the interaction of Hydralazine with functionalized carbon nanotubes by performing density funct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Science

دوره 300 5628  شماره 

صفحات  -

تاریخ انتشار 2003